The competition numbers of Johnson graphs
نویسندگان
چکیده
The competition graph of a digraph D is a graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and characterizing a graph by its competition number has been one of important research problems in the study of competition graphs. The Johnson graph J(n, d) has the vertex set {vX | X ∈ ([n] d ) }, where ([n] d ) denotes the set of all d-subsets of an n-set [n] = {1, . . . , n}, and two vertices vX1 and vX2 are adjacent if and only if |X1 ∩ X2| = d − 1. In this paper, we study the edge clique number and the competition number of J(n, d). Especially we give the exact competition numbers of J(n, 2) and J(n, 3).
منابع مشابه
Energy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملIncidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملDouble Roman domination and domatic numbers of graphs
A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...
متن کاملComplete Tripartite Graphs and their Competition Numbers
We present a piecewise formula for the competition numbers of the complete tripartite graphs. For positive integers x, y and z where 2 ≤ x ≤ y ≤ z, the competition number of the complete tripartite graph Kx,y,z is yz − z − y − x + 3 whenever x 6= y and yz − 2y − z + 4 otherwise.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010